
 
 

 

 
Fuzzing for Android Application: Systematic 

Literature Review 
 

Akash Labade1 and Hemant Ambulgekar2 
1-2 SGGSIE&T, Nanded, India 

Email: 2018mns013@sggs.ac.in; hpambulgekar@sggs.ac.in 
 

  
Abstract—Android application markets are making a crucial shift in the manner software 
which was delivered to the end-users. Android applications face increasingly more security 
threats. The fuzzing technique can be used to uncover the security threats of applications. 
Fuzzing can be summarized similarly to the way toward sending irregular or invalid 
information as a contribution to a framework, to crash the framework and uncovering 
conceivable security vulnerabilities. Various research has been published in the android 
application fuzzing domain, while not many researches have addressed the security 
vulnerabilities in an android application by using external (another device used for 
operations) fuzzing techniques. However, current research doesn't address the android 
application fuzzing using an internal tool (or itself android device). The significance of the 
area, this paper seeks after two targets: to give a complete systematic literature review 
(SLR) of android application fuzzing, requirement’s for android application fuzzing. This 
paper reviewed previous research study in android application fuzzing, also methods 
dependent on necessities in Kitchenham’s systematic literature review guidelines. The 
systematic literature review result has shown the following deficiencies: Internal tool is not 
considered for fuzzing android application; and studies that are lacking in terms of 
requirement types. Furthermore, we proposed strong future directions of fuzzing for 
android application using internal tool. In particular, revealing threats of android 
applications by fuzzing techniques enables developers to build more secure applications and 
increases the mutual trust of its users.  
 
Index Terms— Fuzzing, Android, Application, Fuzz, Testing, Internal tool, Android 
Application, Android Application fuzzing. 

I. INTRODUCTION 

Android application markets are making a crucial shift in the manner software which was delivered to the 
end-users. By giving a medium for reaching a large consumer market at a minimal cost, Android application 
markets have managed to level the software development field with compare to other desktop-based 
software. Small enterprises compete against major software development companies [1]. The result of this 
market share has exploded in recent years. According to recent statistics of Canalys [2], the market hit 369 
million units in the fourth quarter of 2019.  
Android is an open-source and free operating system based on Linux, it self-android is so powerful. Google 
play store having billions of app which are uses for different purposes. A core feature of Android is that one 
application  component  could  use another application  component  element  that belongs if the component is  
 
 
Grenze ID: 01.GIJET.6.2.1  
© Grenze Scientific Society, 2020 

 

Grenze International Journal of Engineering and Technology, July Issue 



 
15 

permitted for using it. Android Application is combination of different components Activity, Services, 
Broadcast receiver, Content provider [3]. Fig 1. Show Inter Component Communication (ICC). Inter 
Component Communication helps the android application to communicate with other applications and device 
drivers.   
Android applications increasingly more security threats. Threats originate from numerous sources [4]–
[6], input data which is unexpected one of the main reasons. Android applications uses, information 
originating from servers, records spared in nearby capacity, and tasks performed by users. These are three 
fundamental kinds of information [7]–[9]. Fuzzing technique which uses file as input is very common, and 
different type of fuzzing frameworks are available. American Fuzz Loop [10] is a great tool for fuzzing 
system libraries, Peach[11] provides the graphical user interface for fuzzing different windows libraries. The 
main idea is fuzzing android applications for discovering potential security threats. In simple words, fuzzing 
is used to uncover applications code or logical problems by continuously sending invalid data from input 
point. Numerous studies on android application fuzzing only focuses on UI events on GUI events. Monkey 
[12] and MonekyRunner [13] are to fuzz tester provided by google. This tool only focuses on UI based 
fuzzing techniques. 
Consistent with previous studies, android application fuzzing is very important in terms of security 
perspective. But very few studies are focused on android application fuzzing for finding security 
vulnerabilities. This systematic literature review study focusses on identifies current fuzzing techniques used 
for android application, what vulnerabilities detected by previous studies, methods, and requirements for 
android application fuzzing, Discussion on fuzzing android application, and future trends.  

 
Fig 1. Inter-Component Communication 

Different components urged to perform this systematic literature review. Another research studies has some 
limitations and drawbacks. Although different survey studies have addressed android application fuzzing by 
external methods. None have focused on fuzzing application through internal (Using an android application 
as a tool). Fuzzing of android applications can be used to found various types of vulnerabilities in Android 
applications. Many of the research uses an external method for fuzzing an android application. Thus, this 
inspired this systematic literature review research.  
This systematic literature review empowers the recognizable proof of holes and difficulties that available in 
explicit research subjects, similar to Fuzzing of Android Application, therefore giving a complete review of 
the whole cutting edge in this area for researchers and practitioners.  
To the best of our knowledge, there is no related literature review or survey summarizing the topic of android 
application fuzzing. We first attempted to meet this need through a comprehensive study. Strongly, we 
undertake a systematic literature review, and very carefully following the guidelines proposed by 
Kitchenham et. al. [14].  
The rest of the paper is organized as follows. Section 2 describes our Research methodology. Section 3 
Result and Discussion of research question on gathered research studies. Section 4 Future Directions for 
fuzzing for android application using internal tool and why it is important. Section 5 concludes this paper. 

II. RESEARCH METHOD 

This paper, Systematic literature review is used to manage the research studies procedure by Kitchenham et. 
al. [14]. Fig 2. shows the phases of methodology, methodology were developed on the procedure of 
Kitchenham et. al. [14]. This Systematic literature review having three phases: planning, conducting, and 
reporting. Each phase has several sub-phases. Planning phase involves the recognizing the need to lead this 



 
16 

systematic literature review which defines research questions. The second phase, Systematic literature review 
directed. It has some sub-phases: search process, research study determination, and data extraction from 
studies. Reporting phase contains a discussion of outcome on research studies. Discussion of usage of Main 
phases and sub-phases are well explained in the sub-sections which are given below.  

A.  Planning 
This systematic literature review underlines loop holes by analysing and identifying the importance of 
fuzzing android applications, requirements for fuzzing Android application, and existing techniques in 
wording of their fuzzing process, description, and exploitations to describe the vulnerabilities of android 
application. Some research questions of systematic literature review were based on the objective and 
requirements of this research.  
R.Q.1. What are the android application fuzz concerns?  
R.Q.2. What are the Requirements for fuzzing Android application? 
R.Q.3. What are the available models/methods/tool for fuzzing Android application? 
R.Q.4. What are the process, descriptions, limitations of each identified model/method/tool? 

 
Fig 2. Phases of this methodology 

B.  Conducting 
Execution of conducting phase was done with help of following sub-phases: search process, research study 
determination, and data extraction from studies. The usage of this phase is showed below. 

1. Search Process Strategy 
An all-around characterized search process has a main job in gaining acceptable quality, and dependable 
outcomes. This systematic literature review, the search process significantly performed to remove the 
information and gather all relevant existing examination studies were the predetermined area of search 
keywords. The search keywords in this systematic literature review are related to the listed research 
questions. For This systematic literature review, we used serval electronic online libraries. These electronic 
online libraries are popular in research studies. 
Electronic online libraries:  

 ACM Digital Library  
 IEEE Xplore 
 Google Scholar  



 
17 

 ScienceDirect  
 SpringerLink 

2. Study Selection Strategy 
After successful execution of conducting is depend upon well-defined search procedure, 240 research studies 
extracted from various online sources which are listed above. By sorting extracted research studies to 
distinguish the important research studies of the defined area of this research, Selection process were done 
with sub-phases: First is inclusion, exclusion criteria of an android application, and Second is quality 
assessment of selected studies. Inclusion-Exclusion phase are figured in this systematic literature review are 
depend on research questions. The inclusion and exclusion process show in TABLE II. Gathered research 
studies sorted depend on the criteria of inclusion, exclusion. Only studies which focus on the android 
application fuzzing and android application or fuzzing and studies that incorporate in any event of the 
research questions by analysing their titles, abstracts, and keywords were included in this systematic 
literature review. 

TABLE II. QUALITY ASSESSMENT 

Inclusion  Exclusion 

Studies are written in English. Studies are not written in English. 
 

Studies propose or include methods for android application 
fuzzing 

Studies do present sufficient technical details about the methods 
for android application fuzzing 

Studies report issues, problems, or experience which point to 
android application fuzzing 

Studies do not concern android application fuzzing 

Studies are relevant to research questions based on title, abstract, 
and keywords of each studies. 

Studies are not related to any defined research questions. 
 

Non-English studies were excluded, and studies which only focusses on fuzzing applications, fuzzing, 
applications, android i.e. irrelevant to our research area were excluded. The duplicate analysis was helps to 
remove duplicate studies and recent copies were included. Therefore, 74 research studies finalised after 
sorting results shows the implementation of inclusion and exclusion phase. To Conducting quality assessment 
phase, Questions for assessment are figured on research questions of this systematic literature review 
research area and guideline procedures of Kitchenam et al [14]. Title, abstract, full content of all collected 
research studies from selected studies are reviewed and figured checklist questions in TABLE III. Question 
scored are defined: Yes=1, Moderately=0.5, and No=0; To ensure the findings of this research systematic 
literature review. Research study was not concerned if its total score is below 5, and the study selected if its 
total score more than 5. As a outcome, only 21 research studies finalised for primary studies of this 
systematic literature review. The primary studies and total scores of quality shows in TABLE IV. Number of 
studies collected and selected during each phase of this systematic literature review from each online 
electronic library are showed in TABLE V. 

TABLE III. QUALITY ASSESSMENT 

No Question Score 
QA1 Are the aims started? Yes=1, Moderately= 0.5, No=0 
QA2 Is the study’s well demonstrated? Yes=1, Moderately= 0.5, No=0 
QA3 Does the study focus on the specified domain of defined research 

questions? 
Yes=1, Moderately= 0.5, No=0 

QA4 Is the proposed solution compressively explained? Yes=1, Moderately= 0.5, No=0 
QA5 Do the results add critical findings to the literature? Yes=1, Moderately= 0.5, No=0 
QA6 Is the reporting clear and coherent? Yes=1, Moderately= 0.5, No=0 

3. Reporting 
In reporting phase of systematic literature review, the Mendeley, EndNote, and other software’s are utilized 
during the time of research information collection, references, and citations. Research information were 
separated and gathered dependent on his systematic literature review research paper questions, whereas each 
chosen primary study was essentially examine to obtain any information that can help with tending to the 
questions. Last data analysis phase, summed up proofs were gathered from the information assembled from 
the chose essential examination to respond to the recorded research questions. 



 
18 

TABLE IV. SCORES FOR THE RESULTS OF PRIMARY STUDIES 

TABLE V. STUDIES SHORTED DURING EACH PHASE OF SYSTEMATIC LITERATURE REVIEW FROM ALL ELECTRONIC RESEARCH LIBRARIES 

Libraries 

Search process strategy 
phase 

 

Inclusion and exclusion Phase 
 

Quality assessment phase 
 

Collected 
 

Included 
 

Excluded 
 

Included 
 

Excluded 
 

IEEE Xplore 23 10 14 6 18 
ACM Digital Library 129 22 107 7 123 

Google Scholar 46 33 13 7 34 
ScienceDirect 8 3 5 0 8 
SpringerLink 34 6 28 1 33 

III. DISCUSSION 

A. R.Q.1 Why are the android application fuzz concerns? 
Fuzzing has been used widely to discover vulnerabilities in software’s and application [28].  Security 
researchers utilizing likewise fuzzing techniques to discovering bugs and vulnerabilities in programs, 
applications or software’s. Purpose of crashing the system and revealing possible security vulnerabilities 
problems is need to be important in development of applications or software’s. 
Android is one of the prevailing processing stages today since it has the main versatile market in advanced 
mobile phones and it is open source programming. Numerous individuals on the planet utilize these Android 
applications every day. A product with such a huge client base should be extremely vigorous and secure, in 
any case, even a few imperfections may prompt huge expenses. However, Android is vulnerable for many 
reasons. Two reasons which we focus on, Reason 1. Android platform versions coexisting in the market from 
the newest version to the old ones [35]. Reason 2. Android applications are mostly written in Java or Katlin 
programming language with Android APIs (Application Programming Interfaces) are used for 
communicating with other servers. Android is Google's open-source platform for mobile devices, and it 
provides the APIs necessary to develop applications for the platform in Java [37]. 
Fuzzing can be considered; it is described as a black-box software or application testing technique to uncover 
the security vulnerabilities. Exceptionally at broad level, a meaning of fuzzing can be summarized just like 
the way toward sending arbitrary or invalid information as a contribution to a framework, to crash the 
framework and uncovering conceivable security vulnerabilities or unwavering quality issues. In the last 
decade, fuzzing has gradually developed, they have gained more popularity among security experts or 

Ref. QA1 QA2 QA3 QA4 QA5 QA6 Score 
J. Burns [15] 1 1 1 1 1 1 6 
H.Ye[16] 1 1 1 1 1 1 6 
K.Yang[17] 1 1 1 1 1 1 6 
A.Marchiry[18] 1 1 0.5 1 1 1 5.5 
Yang[19] 1 1 0.5 1 1 1 5.5 
W. Choi[20] 1 1 0.5 1 1 1 5.5 
S.Hao[21] 1 1 0.5 1 1 1 5.5 
R.Mahmood[22] 1 1 0.5 1 1 1 5.5 
D.Amalditano[23] 1 1 0.5 1 1 1 5.5 
S. Anand[24] 1 1 0.5 1 1 1 5.5 
B.Liu[25] 1 1 0.5 1 1 1 5.5 
Blanda [26] 1 1 1 1 1 1 6 
Karim [27] 1 1 0.5 1 1 1 5.5 
B.Cui[28] 1 1 1 1 1 1 6 
J.Chen [29] 1 1 0.5 1 1 1 5.5 
X.Huang [30] 1 1 1 1 1 1 6 
S.Barsallo [31] 1 1 0.5 1 1 1 5.5 
V.Hatas [32] 1 1 1 1 1 1 6 
W. Kai [33] 1 1 0.5 1 1 1 5.5 
Liang [34] 1 1 1 1 1 1 6 
K.Choi [35] 1 1 1 1 1 1 6 
T.Wu [36] 1 1 1 1 1 1 6 



 
19 

researchers. Thus, we decided to do this systematic literature review on android application fuzzing. As of 
our best knowledge none of studies are done the systematic literature review on android application fuzzing  

B. R.Q.2 What are Requirements for fuzzing Android applications? 
Fuzzing Android application is a unique task. TABLE 6 shows that the requirements of fuzzing android 
applications. Firstly, we classified into three broad categories Android Component, Test Fields, and Test 
Types. Android Application is consists of different components that are Activity, Service, Broadcast 
Receiver, and Content Provider [37]. Activity is the main interface on which users can interact with apps 
[16], [17], [35], [38], [18]–[24], [30]. Services provide essential support and fundamental functionalities for 
user android applications [25]. Binder component helps the android applications to perform calls into the 
codes of system services which were provided by system-level processes that is “system server” [39]. These 
are commonly found where applications want to register for system application events or actions. All 
registered receivers for an event are notified by the Android runtime once this event happens [40]. 
This requirement are general requirements for fuzzing any android application. However, the complexity of 
these prerequisites and issues increment when verities in test fields and test sorts of information. Application 
support different fields action, mime type, and URI (Unified Resource Identifies). Action in the android 
application is used to calling different system application intent. It is also use by other apps to invoke 
methods in applications. Action is the most crucial part in android applications.  MIME-Type specifies the 
media type of the input data in application. Android application support many media type (e.g. text, pdf, 
mp4, etc.). URI (Unified Resource Identifies) is use to identifies different resource protocol. URI in the form 
of “scheme://host: port/path”. Scheme are of two type one is predefined i.e http, https, file, ftp etc. and 
another is self-constructed i.e. fb, twitter etc. Testing types are defining what type of input data is sending to 
the app for fuzzing. In previous studies, Null, Random, Semi-Valid are types of data uses to fuzzing the 
android application. 

TABLE VI. REQUIREMENTS OF FUZZING ANDROID APPLICATION 

Requirement Descriptions 

Android Components  

Activity Activity is the main interface on which users can interact with[16], [17], [35], 
[38], [18]–[24], [30]  

Service Services provide essential support and fundamental functionalities for user 
apps [25]. 

Broadcast Receiver These are commonly found where applications want to register for system or 
applications events or actions [40] 

Testing Fields 

Action Testing with different  action type fields encounter major vulnerabilities in 
applications[30], [35], [38]  

MIME Type MIME specifies the media type of the data input.[16], [30]   

URI URI is in the form of “scheme://host: port/path”. [30] 

Testing Types 

NULL Sending null data to find out the NullPointerException [17], [35], [38] 

Random Random data added in inputs for fuzzing applications. [16], [21], [28], [30], 
[35]   

Semivalid SemiValid data is generated from application behavior by extracting 
application code. [18]–[23], [30] 

C. R.Q.3 What are the available models/methods/tool for fuzzing Android applications? 
This formulated question mainly focuses only on what is available model/methods/tools which are available 
for fuzzing android applications.  
Multiple researchers build the tools for fuzzing android application but most of them are external tools that 
use high-performance computing. Methods/tools/models which are previously introduced by the researcher 
mostly focus on GUI based fuzz testing. Such as [18]–[24] are mainly focus on UI events, touch screen 
events, and GUI testing activities. UI testing is not considered in the form of security vulnerabilities.  Some 
related but not relevant studies are introduced by some researchers which focuses on fuzzing android device 
drivers.[26]–[28], [33] researchers fuzz the android device drivers such as media frameworks. Actual studies 
that are focusses on android application fuzzing to find security vulnerabilities are [16], [17], [30], [32], [35], 
[38].  
 



 
20 

Multiple studies have been investigated to fuzzing techniques to find out different vulnerabilities in the 
android application. This paper reviewed the research studies and classified the methods in terms of their 
android components, tested fields, test types, and vulnerabilities. Vulnerabilities are which are tested by each 
model. TABLE 7 Shows the detailed discussion. [16], [17], [30], [32], [35], [38] studies only focus on 
security vulnerabilities of android applications. Some GUI testing models also added in this study because of 
their process which is similar to security fuzzing, such as[18]–[24]. 

D. R.Q.4 What are process, descriptions, limitations of each identified models/method/tool? 
Many researchers present many models, but most of them are focusing on GUI based fuzzing techniques. 
Only a few models are uses fuzzing for finding security vulnerabilities is android applications. This paper 
only focuses on the fuzzing of android applications to find security vulnerabilities. Thus, we found [15],  
[17], [16][18], [30], [32], [35], [38] studies which focuses on security threats. 
IntentFuzzer [15], the first Intent fuzzing tool for testing Intent vulnerability of Android application. It’s an 
Android application, which use to fuzz other applications.  IntentFuzzer collect information on installed 
applications and their Intent filters through Android API. It fuzz using Null data input and activity 
components only.  
IntentFuzzer [17], combined a static analysis with random fuzzing to test Android apps dynamically. CFG 
analysis were employed to extract the structure of Intents that each target component expects. CFG uses the 
path-insensitive and inter-procedural. The analysis traverses Dalvik bytecode instructions to collect calls to 
Intent's getter or setter methods, and calls to their respective bundle objects, starting at entry point of each 
component's which is onCreate method in Activity. Method of this type of calls use a specific string which is 
denoted by key. It is use to extract extra data from Intents whereas data type is encoded in the same methods 
DroidFuzzer [16], focused on the data field of Intents being set with malformed audio and video files only for 
Activity type components. Based on the extracted URI and MIME data type information from an Android 
app configuration file called AndroidManifest.xml. It built pieces of abnormal audio and video data for 
testing Activities. The tool is equipped with a dynamic crash monitoring module that is capable of detecting 
Activity crashes and native code crashes. DroidFuzzer uncovered bugs such as consumption of resources, 
ANR (Android Not Responding), and crashes from not dealing with malformed audio and video files well, 
rather than bugs resulting from the Intent field missing or incorrect types of Intent field values. 
AFFH [30], the Study carried out vulnerabilities in the android application by fuzzing network traffic 
HTTP/HTTPS of android application. The practical study carried out vulnerabilities are android application 
not responding due crashes caused by JSON data exception, HTML content replacement, and URL 
redirection. This are major vulnerabilities found by this tools AFFH uses middle man technology to intercept 
the HTTP/HTTPS traffic. Model require some human interaction to exploit the security threats. So, the level 
of threat is low in terms of attacker perspective. 
GFuzz [32], Focused on fuzzing the android application installation process with help of Dexfile. classes.dex 
file contains the android application source code. Study focuses on fuzzing the android system library by 
mutating data into the dex file. Apps are need to decompile to get of Dexfiles. Similar tools are also added in 
the studies which are focuses on installation fuzzing. 
Hwacha [35],  Android Application fuzzing tool for detecting Intent vulnerabilities of Android apps causing 
the robustness problem. Authors introduced Intent specification language to describe the structure of Intent. 
The  study  also implemented an LCS-based algorithm to sort duplicates entry in report function.  
ICCFuzzer [38], is another interesting tool to uncover crashes by Null reference exception, Intent spoofing, 
Intent hijacking, and data leak by path-insensitive inter procedural CFG static analysis. It was applied to 
Android apps from DroidBench (https://github.com/secure-software-engineering/DroidBench) and Google 
Play. The number of vulnerabilities detected with this tool was compared with by IntentFuzzer [17]. 
TABLE VIII shows the Fuzzing requirements of android application compared with Studies. All the fuzzing 
testing is done by some external tools. We compare the all the studies which are used for fuzzing. 

IV. FUTURE RESEARCH DIRECTIONS 

Based on results of this systematic literature review and observations, we present the following research 
directions of fuzzing android application. 
Fuzzing using internal tool/method: Security researchers utilizing fuzzing techniques to discovering bugs 
and  vulnerabilities  in  android  applications.  Purpose  of crashing the system and revealing possible security  
 



 
21 

TABLE VII. FUZZING MODEL ANALYSIS CONCERNING VULNERABILITIES 

Ref 
Components 

Vulnerabilities Android 
Component 

Tested Fields  Test type 

[15] Activity None Null NullPointerExtection 

[17] Activity None Null NullPointerExtection, DOS, Application not 
responding. 

[16] Activity MIME-type Random App crash, ANR, Consumption of Resources 
[28] None None Random Segmentation Fault, Bufferover flow 
[26] None None None Segmentation Fault, Bufferover flow 
[39] None None None Segmentation Fault, Bufferover flow 

[30] Activity Action, MIME type, URI Random, Semi-valid 
Application unresponsiveness crashes caused by 
JSON data exception, HTML content 
replacement, and URL redirection. 

[18] Activity None Semi-valid No vulnerabilities carried out, Only UI events 
fuzzing  

[19] Activity None Semi-valid No vulnerabilities carried out, Only UI events 
fuzzing 

[20] Activity None Semi-valid No vulnerabilities carried out, Only UI events 
fuzzing 

[21] Activity None Random No vulnerabilities carried out, Only UI events 
fuzzing 

[22] Activity None Semi-valid No vulnerabilities carried out, Only UI events 
fuzzing 

[23] Activity None Semi-valid No vulnerabilities carried out, Only UI events 
fuzzing 

[24] Activity None Semi-valid No vulnerabilities carried out, Only UI events 
fuzzing 

[25] Service None None Summation fault. 

[27] None None None No vulnerabilities carried out, Only UI events 
fuzzing 

[29] None None None No vulnerabilities carried out, Only UI events 
fuzzing 

[31] None None None No vulnerabilities carried out, Only UI events 
fuzzing 

[32] None None None No vulnerabilities carried out, Only UI events 
fuzzing 

[34] None None None No vulnerabilities carried out, Only UI events 
fuzzing 

[35] Activity Action Null, Random NullPointerExtection, DOS, Application not 
responding. 

[38] Activity Action Null NullPointerExtection, DOS, Application not 
responding. 

vulnerabilities problems is need to be important in development of applications or software’s. Fuzzing has 
been used widely to discover vulnerabilities in software’s and application [28]. 
Application developers are mean to be only develop applications. Developers are not that much aware about 
security testing of applications. It needs to be developed simple and understandable fuzzing testing for 
developers. Because of this, we are proposing the fuzzing for android application using internal tool/method. 
Internal tool can be referred as an android application. Android itself a powerful operating system, one 
application can be used to test another application like desktop application. 
However, only one approach focuses on fuzzing of android application using internal tool. IntentFuzzer [15], 
is only approach which uses the internal method techniques. But this tool has limitations that it can be fuzz 
only the activities of android application by using only NULL data as input.  
In this systematic literature review, we are carried out many different approaches of fuzzing android 
application. We classified the android components, testing fields, and test type for fuzzing android 
application with respect to their approach and vulnerabilities found during their tests 



 
22 

TABLE VIII. FUZZING REQUIREMENTS OF ANDROID APPLICATION COMPARED WITH STUDIES 

Ref Inter
nal 

Tool 

Extern
al Tool 

Tested Android 
Components 

Tested Fields Test Type System 
Librari

es 
tested 

UI 
Even

ts 

Repor
ts 

Activity Service Receiver Action Mime-
Type URI Null Random Semi-

valid 

[15]              

[17]               

[16]               

[28]               

[26]               

[39]               

[30]               

[18]               

[19]               

[20]               

[21]               

[22]               

[23]               

[24]               

[25]               

[27]               

[29]               

[31]               

[32]               

[34]               

[35]               

[38]               

IV. CONCLUSION 

This study investigates the current state-of-art on android applications fuzzing. During systematic literature 
review, 21 Studies are selected, that were published in major conferences, workshops, and journals in the 
area software engineering, programming language, and security domain. This Paper answers research 
questions (RQs) that encounter during the research study. Studies that are focused on android application 
fuzzing and find security threats are uses external devices for their methods. Such devices are very costly and 
required higher performance capabilities. None of the studies have been addressed the fuzzing using an 
internal tool or using an android application. This systematic literature review intensively reviewed the 
various research papers in the related area of android application fuzzing. Previous research studies have not 
addressed the fuzzing using an android device. We proposed the arrangement of prerequisites for android 
application fuzzing that can be utilized as the premise of such a model. In particular, revealing threats of 
android applications by fuzzing techniques enables developers to make more secure android applications and 
increases the mutual trust of its users. Using Android as a tool for fuzzing will helps the developer for finding 
security threats to the android application. 

REFERENCES 

[1] S. Malek, N. Esfahani, T. Kacem, R. Mahmood, N. Mirzaei, and A. Stavrou, “A framework for automated security 
testing of android applications on the cloud,” Proc. 2012 IEEE 6th Int. Conf. Softw. Secur. Reliab. Companion, 
SERE-C 2012, pp. 35–36, 2012, doi: 10.1109/SERE-C.2012.39. 

[2] Canalys, “Canalys Newsroom- Global smartphone market Q4 and full year 2019,” Canalys, 2020. 



 
23 

https://www.canalys.com/newsroom/canalys-global-smartphone-market-q4-2019 (accessed May 16, 2020). 
[3] J. Liu and J. Yu, “Research on development of android applications,” Proc. - 2011 4th Int. Conf. Intell. Networks 

Intell. Syst. ICINIS 2011, pp. 69–72, 2011, doi: 10.1109/ICINIS.2011.40. 
[4] J. Ma, S. Liu, Y. Jiang, X. Tao, C. Xu, and J. Lu, “LESdroid: A tool for detecting exported service leaks of Android 

applications,” Proc. - Int. Conf. Softw. Eng., pp. 244–254, 2018, doi: 10.1145/3196321.3196336. 
[5] Q. Zeng, L. Luo, Z. Qian, X. Du, and Z. Li, “Resilient decentralized android application repackaging detection using 

logic bombs,” CGO 2018 - Proc. 2018 Int. Symp. Code Gener. Optim., vol. 2018-Febru, pp. 50–61, 2018, doi: 
10.1145/3168820. 

[6] A. Hamidreza and N. Mohammed, “Permission-based Analysis of Android Applications Using Categorization and 
Deep Learning Scheme,” MATEC Web Conf., vol. 255, p. 05005, 2019, doi: 10.1051/matecconf/201925505005. 

[7] L. Zhang et al., “Invetter: Locating insecure input validations in android services,” Proc. ACM Conf. Comput. 
Commun. Secur., pp. 1165–1178, 2018, doi: 10.1145/3243734.3243843. 

[8] L. Casati and A. Visconti, “The Dangers of Rooting: Data Leakage Detection in Android Applications,” Mob. Inf. 
Syst., vol. 2018, 2018, doi: 10.1155/2018/6020461. 

[9] S. Kelkar, T. Kraus, D. Morgan, J. Zhang, and R. Dai, “Analyzing HTTP-Based Information Exfiltration of 
Malicious Android Applications,” Proc. - 17th IEEE Int. Conf. Trust. Secur. Priv. Comput. Commun. 12th IEEE Int. 
Conf. Big Data Sci. Eng. Trust. 2018, pp. 1642–1645, 2018, doi: 10.1109/TrustCom/BigDataSE.2018.00242. 

[10] “american fuzzy lop.” https://lcamtuf.coredump.cx/afl/ (accessed May 27, 2020). 
[11] “Peach Fuzzer - Peach Tech.” https://www.peach.tech/products/peach-fuzzer/ (accessed May 27, 2020). 
[12] “UI/Application Exerciser Monkey  |  Android Developers.” https://developer.android.com/studio/test/monkey 

(accessed May 27, 2020). 
[13] “monkeyrunner  |  Android Developers.” https://developer.android.com/studio/test/monkeyrunner (accessed May 27, 

2020). 
[14] B. Kitchenham and S. Charters, “Source: &quot;Guidelines for performing Systematic Literature Reviews in 

SE&quot;, Kitchenham et al Guidelines for performing Systematic Literature Reviews in Software Engineering,” 
2007. 

[15] J. Burns, “Digging into droids. Exploratory AndroidTM Surgery,” 2009. Accessed: Jun. 08, 2020. [Online]. 
Available: https://www.isecpartners.com. 

[16] H. Ye, S. Cheng, L. Zhang, and F. Jiang, “DroidFuzzer: Fuzzing the Android apps with intent-filter tag,” ACM Int. 
Conf. Proceeding Ser., pp. 68–74, 2013, doi: 10.1145/2536853.2536881. 

[17] K. Yang, J. Zhuge, Y. Wang, L. Zhou, and H. Duan, “IntentFuzzer: Detecting capability leaks of android 
applications,” ASIA CCS 2014 - Proc. 9th ACM Symp. Information, Comput. Commun. Secur., pp. 531–536, 2014, 
doi: 10.1145/2590296.2590316. 

[18] A. Machiry, R. Tahiliani, and M. Naik, “Dynodroid: An input generation system for android apps,” 2013 9th Jt. 
Meet. Eur. Softw. Eng. Conf. ACM SIGSOFT Symp. Found. Softw. Eng. ESEC/FSE 2013 - Proc., pp. 224–234, 
2013, doi: 10.1145/2491411.2491450. 

[19] W. Yang, M. R. Prasad, and T. Xie, “A grey-box approach for automated GUI-model generation of mobile 
applications,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 
7793 LNCS, pp. 250–265, 2013, doi: 10.1007/978-3-642-37057-1_19. 

[20] W. Choi, G. Necula, and K. Sen, “Guided GUI testing of android apps with minimal restart and approximate 
learning,” Proc. Conf. Object-Oriented Program. Syst. Lang. Appl. OOPSLA, pp. 623–639, 2013, doi: 
10.1145/2509136.2509552. 

[21] S. Hao, B. Liu, S. Nath, W. G. J. Halfond, and R. Govindan, “[KY] PUMA : Programmable UI-Automation for 
Large-Scale Dynamic Analysis of Mobile Apps Categories and Subject Descriptors,” MobiSys ’14, pp. 204–217, 
2014. 

[22] R. Mahmood, N. Mirzaei, and S. Malek, “EvoDroid: Segmented evolutionary testing of Android apps,” Proc. ACM 
SIGSOFT Symp. Found. Softw. Eng., vol. 16-21-Nove, pp. 599–609, 2014, doi: 10.1145/2635868.2635896. 

[23] D. Amalfitano, A. R. Fasolino, P. Tramontana, S. De Carmine, and A. M. Memon, “Using GUI ripping for 
automated testing of android applications,” 2012 27th IEEE/ACM Int. Conf. Autom. Softw. Eng. ASE 2012 - Proc., 
pp. 258–261, 2012, doi: 10.1145/2351676.2351717. 

[24] S. Anand, M. Naik, M. J. Harrold, and H. Yang, “Automated concolic testing of smartphone apps,” Proc. ACM 
SIGSOFT 20th Int. Symp. Found. Softw. Eng. FSE 2012, pp. 1–11, 2012, doi: 10.1145/2393596.2393666. 

[25] B. Liu, C. Zhang, G. Gong, Y. Zeng, H. Ruan, and J. Zhuge, “FANS : Fuzzing Android Native System Services via 
Automated Interface Analysis,” USENIX Secur., no. 1, 2020. 

[26] A. Blanda, “Fuzzing Android: a recipe for uncovering vulnerabilities inside system components in Android.” 
[27] Karim, F. Cicala, S. R. Hussain, O. Chowdhury, and E. Bertino, “Opening Pandora’s box through Atfuzzer: 

Dynamic analysis of at interface for android smartphones,” ACM Int. Conf. Proceeding Ser., pp. 529–543, 2019, doi: 
10.1145/3359789.3359833. 

[28] A. Cui, Y. Ni, and Y. Fu, “ADDFuzzer: A New Fuzzing Framework of Android Device Drivers,” Proc. - 2015 10th 
Int. Conf. Broadband Wirel. Comput. Commun. Appl. BWCCA 2015, pp. 88–91, 2015, doi: 
10.1109/BWCCA.2015.57. 

[29] Chen, W. Diao, Q. Zhao, C. Zuo, Z. Lin, and X. Wang, “I O TF UZZER : Discovering Memory Corruptions in IoT 



 
24 

Through App-based Fuzzing,” no. February 2018, 2020. 
[30] Liu, X. Huang, A. Zhou, P. Jia, and L. Liu, “Fuzzing the Android Applications with HTTP/HTTPS Network Data,” 

IEEE Access, vol. 7, pp. 59951–59962, 2019, doi: 10.1109/ACCESS.2019.2915339. 
[31] E. B. Yi, H. Zhang, K. Xu, A. Maji, and S. Bagchi, “Vulcan: Lessons in Reliability of Wear OS Ecosystem through 

State-Aware Fuzzing.” 
[32] V. Hatas, S. Sen, and J. A. Clark, “Efficient Evolutionary Fuzzing for Android Application Installation Process,” 

Proc. - 19th IEEE Int. Conf. Softw. Qual. Reliab. Secur. QRS 2019, pp. 62–68, 2019, doi: 10.1109/QRS.2019.00021. 
[33] W. Kai, Z. Yuqing, L. Qixu, and F. Dan, “A fuzzing test for dynamic vulnerability detection on Android Binder 

mechanism,” 2015 IEEE Conf. Commun. NetworkSecurity, CNS 2015, pp. 709–710, 2015, doi: 
10.1109/CNS.2015.7346897. 

[34] C.-J. M. Liang et al., “Contextual Fuzzing: Automated Mobile App Testing Under Dynamic Device and 
Environment Conditions,” Msr, no. March, pp. 1–13, 2013, [Online]. Available: h. 

[35] Choi, M. Ko, and B. M. Chang, “A practical intent fuzzing tool for robustness of inter-component communication in 
android apps,” KSII Trans. Internet Inf. Syst., vol. 12, no. 9, pp. 4248–4270, 2018, doi: 10.3837/tiis.2018.09.008. 

[36] T. Wu and Y. Yang, “Crafting Intents to Detect ICC Vulnerabilities of Android Apps,” in 2016 12th International 
Conference on Computational Intelligence and Security (CIS), 2016, pp. 557–560. 

[37] G. D. T. Team, “Android Developer Fundamentals Course - Concept Reference,” Google Calif., pp. 1–114, 2011, 
doi: 10.1002/ejoc.201200111. 

[38] T. Wu and Y. Yang, “Crafting intents to detect ICC vulnerabilities of android apps,” Proc. - 12th Int. Conf. Comput. 
Intell. Secur. CIS 2016, no. Icc, pp. 557–560, 2017, doi: 10.1109/CIS.2016.135. 

[39] W. Kai, Z. Yuqing, L. Qixu, and F. Dan, “A fuzzing test for dynamic vulnerability detection on Android Binder 
mechanism,” in 2015 IEEE Conference on Communications and Network Security (CNS), 2015, pp. 709–710. 

[40] M. H. Saad, A. Serageldin, and G. I. Salama, “Android spyware disease and medication,” 2015 2nd Int. Conf. Inf. 
Secur. Cyber Forensics, InfoSec 2015, pp. 118–125, 2016, doi: 10.1109/InfoSec.2015.7435516. 

 

 

 
  


